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Abstract. We clarify the succinctness of the different ω-automata types
and the size blowup involved in boolean operations on them. We argue
that there are good reasons for the classic acceptance conditions, while
there is also place for additional acceptance conditions, especially in the
deterministic setting; Boolean operations on deterministic automata with
the classic acceptance conditions involve an exponential size blowup,
which can be avoided by using stronger acceptance conditions. In par-
ticular, we analyze the combination of hyper-Rabin and hyper-Streett
automata, which we call hyper-dual, and show that in the determinis-
tic setting it allows for exponential succinctness compared to the classic
types, boolean operations on it only involve a quadratic size blowup, and
its nonemptiness, universality, and containment checks are in PTIME.
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1 Introduction

Automata on infinite words, often called ω-automata, were introduced in the
1960s in the course of solving decision problems in logic, and since the 1980s
they play a key role in formal verification of reactive systems. Unlike automata
on finite words, these automata have various acceptance conditions (types), the
most classic of which are weak, Büchi, co-Büchi, parity, Rabin, Streett, and
Muller.

There are good reasons for having multiple acceptance conditions in ω-
automata: each is closely connected to some other formalisms and logics, and
has its advantages and disadvantages with respect to succinctness and to the
complexity of resolving decision problems on it (see [6]).

There is a massive literature on the translations between the different au-
tomata types, accumulated along the past 55 years, and continuing to these
days. (See, for example, [14, 33, 34, 25, 32, 41, 17, 27, 36, 8, 37, 4].) Having “only”
seven classic types, where each can be deterministic or nondeterministic, we have
175 possible non-self translations between them, which has become difficult to
follow. Moreover, it turns out that there is inconsistency in the literature results
concerning the size of automata—Some only consider the number of states, some
also take into account the index (namely, the size of the acceptance condition),
while ignoring the alphabet size, and some do consider the alphabet size, but
ignore the index.
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To make an order with all of these results, we maintain a website [3] that
provides information and references for each of the possible translations. The
high-level tables of the size blowup and of the state blowup involved in the
translations are given in Table 1.

There are many works on the complementation of nondeterministic ω-automata
(see [38] for a survey until 2007, after which there are yet many new results),
while very few on boolean operations on deterministic ω-automata. This is pos-
sibly because nondeterministic automata are exponentially more succinct than
deterministic ones and are adequate for model checking. However, in recent years
there is a vast progress in synthesis and in probabilistic model checking, which re-
quire deterministic or almost deterministic automata, such as limit-deterministic
[39] or good-for-games automata [21, 7, 9].

In [6], we completed the picture of the size blowup involved in boolean opera-
tions on the classic ω-automata types, as summarized in Table 2. Observe that all
of the classic ω-regular-complete automata types, namely parity, Rabin, Streett,
and Muller, admit in the deterministic setting an exponential size blowup on
boolean operations, even on the positive ones of union and intersection.

Indeed, the problem with boolean operations on classic deterministic au-
tomata and the current interest in the deterministic setting, may explain the
emergence of new, or renewed, automata types in the past seven years. Among
these are “Emerson-Lei” (EL), which was presented in 1985 [18], and was re-
cently “rediscovered” within the “Hanoi” format [1], “generalized-Rabin” [24],
and “generalized-Streett” [2]. The EL condition allows for an arbitrary boolean
formula over sets of states that are visited finitely or infinitely often, generalized-
Rabin extends the Rabin pairs into lists, and generalized-Streett analogously
extends Streett pairs.

While boolean operations on EL automata are obviously simple, it is known
that its nonemptiness check is NP-complete [18] and its universality check is
EXPSPACE-complete [20].

We analyzed in [6] additional non-classic acceptance conditions, and showed
that there is no inherent reason for having an exponential size blowup in positive
boolean operations on deterministic ω-regular-complete automata that admit a
PTIME nonemptiness check: We observed that generalized-Rabin is a special
case of a disjunction of Streett conditions, which was already considered in 1985
under the name “canonical form” [18], and which we dubbed “hyper-Rabin”.
We showed that it may be exponentially more succinct than the classic types,
it allows for union and intersection with only a quadratic size blowup, and its
nonemptiness check is in PTIME (see Tables 2 and 3). Indeed, there seem to
also be practical benefits for generalized-Rabin automata [24, 13, 19], which may
possibly be extended to the more general hyper-Rabin condition.

We further analyze in Section 5 the possibility of deterministic ω-regular-
complete automata that admit PTIME algorithms for nonemptiness, universal-
ity, and containment checks, and for which all boolean operations, including
complementation, only involve a quadratic size blowup. We show that it is in-
deed possible with an approach that upfront seems to only bring redundancy—
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maintaining a pair of equivalent automata, one with the hyper-Rabin condition
and one with its dual (hyper-Streett) condition. We call such a pair a hyper-dual
automaton. Observe that in the deterministic setting, it is the same as a pair of
hyper-Rabin automata, one for a language L and one for its complement L.

One may wonder what benefit can we have from a deterministic hyper-dual
automaton, having inner automata for both L and L, rather than having an
automaton only for L, and complementing it when necessary. We list below
some of the benefits:

– A deterministic hyper-dual automaton, despite having a pair of inner au-
tomata for both L and L, is at most twice the size of classic automata, such
as Rabin and Streett, and may be exponentially more succinct than them.
(Propositions 2 and 7).

– The approach of maintaining an automaton and its complement obviously
allows for “free” complementation, yet it might have a price in union and
intersection. For example, a pair of equivalent deterministic automata, one
with the Rabin condition and one with its dual (Streett) condition, would
have an exponential size blowup on both union and intersection. The hyper-
dual combination is strong enough to prevent this price, and not too strong
for preserving decision problems in PTIME.

– In some scenarios, an automaton is generated iteratively, starting with a
basic one, and enlarging it with consecutive boolean operations. In such
scenarios, a hyper-dual automaton may have a big advantage—its initial
generation is not more difficult than of Rabin or Streett automata, and
each boolean operation only involves up to a quadratic size blowup, while
preserving the ability to check nonemptiness, universality, and containment
in PTIME.

– Compared to complementing a hyper-Rabin automaton on demand:

• In theory, a deterministic hyper-Rabin automaton can always be comple-
mented into a hyper-Streett automaton that is not bigger than the corre-
sponding hyper-dual automaton. Yet, the complementation procedure is
exponential, and does not guarantee the smallest possible hyper-Streett
automaton. Hence, having in a hyper-dual automaton a small hyper-
Streett automaton in addition to the hyper-Rabin automaton provides
a significant potential advantage.

• In iterative generations, complementation need not be made over and
over again, size optimizations would take into account both the hyper-
Rabin and hyper-Streett conditions, and progress is guaranteed to be
homogenous with no heavy steps in the middle.

• When expressing some property with only a hyper-Rabin automaton in
mind, it might be that we generate a small initial automaton whose
complementation would involve an exponential size blowup. Targeting
hyper-dual automata, we may limit ourselves to properties that can be
expressed with small hyper-dual automata, which then guarantees easy
boolean operations.
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2 ω-Automata and their Acceptance Conditions

A nondeterministic automaton is a tuple A = 〈Σ,Q, δ, ι, α〉, where Σ is the input
alphabet, Q is a finite set of states, δ : Q × Σ → 2Q is a transition function,
ι ⊆ Q is a set of initial states, and α is an acceptance condition. If |ι| = 1 and for
every q ∈ Q and σ ∈ Σ, we have |δ(q, σ)| ≤ 1, we say that A is deterministic.

A run r = r(0), r(1), · · · of A on an infinite word w = w(0) · w(1) · · · ∈ Σω

is an infinite sequence of states such that r(0) ∈ ι, and for every i ≥ 0, we have
r(i+ 1) ∈ δ(r(i), w(i)). An automaton accepts a word if it has an accepting run
on it (as defined below, according to the acceptance condition). The language
of A, denoted by L(A), is the set of words that A accepts. We also say that
A recognizes the language L(A). Two automata, A and A′, are equivalent iff
L(A) = L(A′).

Acceptance is defined with respect to the set inf (r) of states that the run r
visits infinitely often. Formally, inf (r) = {q ∈ Q | for infinitely many i ∈ IN,
we have r(i) = q}.

We start with describing the most classic acceptance conditions, after which
we will describe some additional ones.

– Büchi, where α ⊆ Q, and r is accepting iff inf (r) ∩ α 6= ∅.
– co-Büchi, where α ⊆ Q, and r is accepting iff inf (r) ∩ α = ∅.
– weak is a special case of the Büchi condition, where every strongly connected

component of the automaton is either contained in α or disjoint to α.
– parity, where α = {S1, S2, . . . , S2k} with S1 ⊂ S2 ⊂ · · · ⊂ S2k = Q, and r is

accepting iff the minimal i for which inf (r) ∩ Si 6= ∅ is even.
– Rabin, where α = {〈B1, G1〉, 〈B2, G2〉, . . . , 〈Bk, Gk〉}, with Bi, Gi ⊆ Q and r

is accepting iff for some i ∈ [1..k], we have inf (r)∩Bi = ∅ and inf (r)∩Gi 6= ∅.
– Streett, where α = {〈B1, G1〉, 〈B2, G2〉, . . . , 〈Bk, Gk〉}, with Bi, Gi ⊆ Q and
r is accepting iff for all i ∈ [1..k], we have inf (r)∩Bi = ∅ or inf (r)∩Gi 6= ∅.

– Muller, where α = {α1, α2, . . . , αk}, with αi ⊆ Q and r is accepting iff for
some i ∈ [1..k], we have inf (r) = αi .

Notice that Büchi and co-Büchi are special cases of the parity condition,
which is in turn a special case of both the Rabin and Streett conditions.

Two additional types that are in common usage are:

– very weak (linear) is a special case of the Büchi (and weak) condition, where
all cycles are of size one (self loops).

– generalized Büchi, where α = {α1, α2, . . . , αk}, with αi ⊆ Q and r is accept-
ing iff for every i ∈ [1..k], we have inf (r) ∩ αi 6= ∅.

A general way of describing an acceptance condition was given by Emerson
and Lei in 1985 [18]: For a set S of states, we define that Inf (S ) holds in a run
r if S ∩ inf (r) 6= ∅ and Fin(S ) holds otherwise. Then,

– Emerson-Lei is an arbitrary boolean formula over Fin and Inf of sets of
states. (A positive boolean formula is enough, as ¬Fin(S ) = Inf (S ).)
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Using the Emerson-Lei notation, we define below some additional types that
were defined (or renewed) in recent years.

– Generalized-Rabin:
∨n

i=1 Fin(Bi) ∧ Inf (Gi1 ) ∧ Inf (Gi2 ) ∧ . . . ∧ Inf (Giki
).

– Generalized-Streett :
∧n

i=1 Inf (Gi) ∨ Fin(Bi1 ) ∨ Fin(Bi2 ) ∨ . . . ∨ Fin(Biki
).

– Hyper-Rabin:
∨n

i=1

∧m
j=1 Fin(Bi,j ) ∨ Inf (Gi,j ).

– Hyper-Streett :
∧n

i=1

∨m
j=1 Fin(Bi,j ) ∧ Inf (Gi,j ).

Another related type is circuit [22], which further shortens Emerson-Lei, by
representing the acceptance formula as a boolean circuit. In Section 5, we also
consider the combination of hyper-Rabin and hyper-Streett automata, which we
call hyper-dual. Very-weak, weak, and co-Büchi automata, as well as determin-
istic Büchi automata, are less expressive than the other automata types, which
recognize all ω-regular languages.

The index of an automaton is the length of the boolean formula describing its
acceptance condition. For the more standard types, this definition coincides with
the standard definition of index: The number of sets in the generalized-Büchi,
parity, and Muller conditions, the number of pairs in the Rabin and Streett
conditions, and 1 in the very-weak, weak, co-Büchi, and Büchi conditions.

The size of an automaton is the maximum size of its elements; that is, it is the
maximum of the alphabet size, the number of states, the number of transitions,
and the index.

3 Succinctness

Size versus number of states. Out of the four elements that constitute the size
of an automaton, the number of states and the index are the dominant ones.

Considering the alphabet, the common practice is to provide the upper
bounds for arbitrary alphabets and to seek lower bounds with fixed alphabets.
For example, [28] strengthen the lower bound of [30] by moving to a fixed alpha-
bet, and [41] starts with automata over a rich alphabet and then moves to a fixed
alphabet. It turns out that this approach works well for all relevant translations,
eliminating the influence of the alphabet. As for the number of transitions, they
are bounded by the size of the alphabet times quadratically the number of states,
and the transition blowup tends to go hand in hand with the state blowup.

Considering the number of states and index, one cannot get the full picture by
studying their blowup separately, as they are interconnected, and sometimes have
a trade-off between them. For example, one can translate a Streett automaton
to a Rabin automaton with an exponential state blowup and no index blowup
[14] as well as with only a quadratic state blowup and an exponential index
blowup [5]. Therefore, there is only a quadratic inevitable state blowup and no
inevitable index blowup. Yet, there is an exponential inevitable size blowup [5].

The high-level tables of the size blowup and of the state blowup involved
in the translations of automata with classic acceptance conditions are given
in Table 1. The size blowup relates to an automaton of size n, and the state
blowup to an automaton with n states (and index as large as desired). The
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Size
Blowup

To Deterministic Nondeterministic

From W C B P R S M W C B P R S M

Det.

W ·

2Θ(n)

·

Θ(n)

2Θ(n)

C · ·

B · Θ(n) ·

P ·
Θ(n2)

·

R 2Θ(n)

Θ(2n logn)

O(n2)
Ω(n)

O(n2)
Ω(n)

· O(n2)
Ω(n)

S 2Θ(n)

·

· Θ(n) 2Θ(n) ·

M O(n2)
Ω(n)

? O(2n logn)

2Ω(n)
· O(n2)

Ω(n)
Θ(n3) Θ(n2) ·

Non-

Det.

W

∗1

22Ω(n)

·

Θ(n)

2Θ(n)

C 2Θ(n) ·

B
2Θ(n logn)

2Θ(n)

·

P
Θ(n2)

·

R
∗2 2Θ(n2 logn)

O(n2)
Ω(n)

· O(n2)
Ω(n)

S ·

M ∗3 2O(n3 logn)

2Ω(n logn)
Θ(n3) Θ(n2) ·

State
Blowup

To Deterministic Nondeterministic

From W C B P R S M W C B P R S M

Det.

W ·

Θ(n)

·

C · · Θ(n)

B · ·

P · Θ(n2) ·

R 2Θ(n)

Θ(2n logn)

·

S
2Θ(n)

·
· Θ(n) 2Θ(n)

Θ(n2)
·

M · ·

Non-

Det.

W ·

Θ(n)C 2Θ(n) ·

B
2Θ(n logn)

·

P Θ(n2) ·

R ? 22Θ(n) 2Θ(n) ·

S ∗4 ? ∗5 ? ∗4
Θ(n2)

·

M ? 22Θ(n) ·

∗1: Upper bounds between 22O(n)

and 22O(n3 logn)

∗2: To DBW: 2Ω(n logn)

∗3: Lower bound to DBW: 2Ω(n) ∗4: 2O(n2 logn) and 2Ω(n logn) ∗5: 2Θ(n2 logn)

Table 1. Size blowup and state blowup involved in automata translations [3].
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capital letters stand for the type names: Weak, Co-Büchi, Büchi, etc. A question
mark in the tables stands for an exponential gap between the currently known
lower and upper bounds. The size blowup involved in the translations of the
stronger acceptance conditions, as discussed in Section 5, is given in Table 4.

Inevitable: Succinctness + Complementation ≥ Double-Exp. Aside from the
translations between specific automata types, one may wonder what might be
the succinctness of an arbitrary, possibly yet unknown, automaton type. It turns
out that there is an inherent tradeoff between the succinctness of an automaton
and the size blowup involved in its complementation—It is shown in [35] that
there is a family of ω-regular languages {Ln}n≥1, such that for every n, there
is an Emerson-Lei automaton of size n for Ln, while every ω-automaton for Ln

has at least 22
n

states.
Hence, for an automaton of some type T whose complementation only in-

volves a single-exponential size blowup, there must also be at least a single-
exponential size blowup in translating arbitrary ω-automata into T -automata.
Analogously, if we aim for a single-exponential blowup in determinization, and
no blowup in the complementation of deterministic automata, there must be at
least a double-exponential size blowup in translating arbitrary automata into
deterministic T -automata.

In this sense, the classic types, except for Muller, provide a reasonable trade-
off between their succinctness and the size blowup involved in their determiniza-
tion and complementation, having all of these measures singly exponential.

Proposition 1 ([6]). For every n ∈ IN and nondeterministic ω-automaton of
size n, there is an equivalent nondeterministic Büchi automaton of size in 2O(n)

and an equivalent deterministic parity automaton of size in 22
O(n)

.

4 Boolean Operations and Decision Problems

In the nondeterministic setting, boolean operations on the classic automata
types, except for Muller, roughly involve an asymptotically optimal size blowup:
linear for union, quadratic for intersection, and singly exponential for comple-
mentation. These blowups are inevitable already in automata over finite words.
In the deterministic setting, however, the picture is different, having an exponen-
tial size blowup on union or intersection for all of the classic ω-regular-complete
types. In this setting, the stronger acceptance conditions, as elaborated on in
Section 5, match the inevitable blowups, having only quadratic size blowup.
The size blowup involved in boolean operations is summarized in Table 2.

Seeking small size blowup on boolean operations is only one side of the
equation—one should consider it in conjunction with the succinctness of the
automaton type and the complexity of the nonemptiness and universality prob-
lems. The EL acceptance condition, for example, is very flexible and there is a
small size blowup in boolean operations on deterministic EL automata, however
at the cost of a high complexity of the decision problems.
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Operations
Size Blowup

On Deterministic Automata On Nondeterministic Automata
Union Intersect. Complement. Union Intersect. Complement.

Weak

Quadratic

No
blowup

Linear

Quad.

2Θ(n)

[31]
(if possible)Co-Büchi No blowup

[25]
(if possible)Büchi

2Θ(n logn)

[30, 33, 11]
Parity

Exponential
[29, 6]

No
blowup

Quad. -
Quartic

Rabin
Quad.

[6]
Exp.
[6] Exp.

[28]
Quad.

[6]

2Θ(n2 logn)

[26, 12, 10]
Streett

Exp.
[6]

Quad.
[6]

Muller
Exp.
[6]

Exp.
[33]

Exp.
[6]

Double-Exp.
[6]

Hyper-Rabin

Quadratic
Prop. 3, [6]

Exp.
[6]

Linear
Quad.

Prop. 4,
[6]

Exp.
[6]

Hyper-Streett
Double-Exp.

[6]

Hyper-dual
Exp.

Prop. 4

Emerson-Lei

No
blowup Double-Exp.

[6]
Table 2. The size blowup involved in boolean operations.

The best possible complexity for the nonemptiness problem is NLOGSPACE
and linear time, taking its lower bound from the reachability problem. It is indeed
achieved with Büchi automata. For the stronger classic acceptance conditions,
except for Streett, it remains in NLOGSPACE, while exceeding the linear time,
and for Streett it is PTIME-complete. The further stronger conditions either
remain in PTIME, as Hyper-Rabin and Hyper-dual, or become NP-complete, as
hyper-Streett and Emerson-Lei.

The best possible complexity for the universality problem on nondetermin-
istic automata is PSPACE-complete, taking its lower bound from automata on
finite words. It is achieved for all the classic types, as well as for the hyper-Rabin
and hyper-dual types. A possible way to perform the universality check of an
automaton A of these types is the following: translate A to a Streett automaton
B with only a polynomial size blowup, then complement B to a Büchi automaton
C on the fly, having a potential exponential space, and check the nonemptiness
of C in logarithmic space, yielding a PSPACE algorithm in the size of A [33].

The complexity of the nonemptiness and universality problems (of nondeter-
ministic automata) is summarized in Table 3.
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Checks of
Nondeterministic

Nonemptiness Universality

Weak
Linear time,
NL-complete

[16, 40]

PSPACE-comp.
[33]

Co-Büchi

Büchi

Parity
O(m log k) time,
NL-comp. [18, 23]

Rabin
O(mk) time,

NL-comp. [40]

Streett PTIME-comp. [18]

Muller NL-comp. [15]

Hyper-Rabin
PTIME-comp.

[18]
PSPACE-comp.

[18]

Hyper-Streett
NP-complete

[6]
EXPSPACE-comp.

[20]

Hyper-dual
PTIME-comp.

Prop. 8
PSPACE-comp.

Prop. 8

Emerson-Lei
NP-complete

[18]
EXPSPACE-comp.

[33]
Table 3. The complexity of the nonemptiness and universality checks of nondetermin-
istic automata. The complexity is w.r.t. the automaton size n, and if specified, w.r.t.
m states and index k.

Translations
Size Blowup

Deterministic Nondeterministic

From
To

H-Rabin H-Streett H-Rabin H-Streett

Det.
Hyper-Rabin · Exp. · O(n2)

Hyper-Streett Exp. · Exp. ·

Non-
Det.

Hyper-Rabin Exp. · O(n2)

Hyper-Streett Double-Exp. Exp. ·

Table 4. The size blowup involved in translations between hyper-Rabin/Streett au-
tomata. The translations to and from generalized-Rabin/Streett automata have the
same blowup. All results are from [6].
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5 Hyper-Dual

We look in this section into a new automaton type that consists of two equivalent
inner automata, one with the hyper-Rabin condition and one with the hyper-
Streett condition. In the deterministic setting, it is the same as having two hyper-
Rabin automata, one for the requested language and one for its complement.

Despite the first impression that it only brings redundancy, it seems to have
an interesting potential in the deterministic setting—It allows for all boolean op-
erations with only a quadratic state blowup, and for polynomial-time algorithms
of the decision problems of emptiness, universality, and automata comparison.
(A further discussion of its benefits is given at the end of the Introduction.)

Construction. Constructing a hyper-dual automaton is not more difficult than
constructing any classic automaton—having an automaton A with the Rabin or
Streett condition, a pair (A,A) is a proper hyper-dual automaton.

Proposition 2. The Rabin and Streett acceptance conditions are special cases
of both the hyper-Rabin and the hyper-Streett conditions.

Proof. Observe that the Streett condition is the hyper-Rabin condition with a
single disjuct, while the Rabin condition is a hyper-Rabin condition, in which
every disjunct consists of two elements Fin(B) ∨ Inf (∅) and Fin(Q) ∨ Inf (G),
where Q is the entire set of states in the automaton, and B,G ⊆ Q.

As for hyper-Streett, the claim follows from the duality to hyper-Rabin.

Boolean operations. Further generating deterministic hyper-dual automata by
boolean operations is easy, involving only a quadratic size blowup—The comple-
ment of a deterministic hyper-dual automaton C = (A,B) is C = (B,A), while
the union and intersection of deterministic hyper-dual automata C′ = (A′,B′)
and C′′ = (A′′,B′′) is C = (A′ ∪ A′′,B′ ∪ B′′) and C = (A′ ∩ A′′,B′ ∩ B′′),
respectively, involving a quadratic size blowup (Table 2 ).

Proposition 3. Complementation of a deterministic hyper-dual automaton in-
volves no size blowup, and the union and intersection of two deterministic hyper-
dual automata involve a quadratic size blowup.

In the nondeterministic setting, it is almost similar to handling only hyper-
Rabin automata, for a simple reason—translating a nondeterministic hyper-
Rabin automaton into an equivalent hyper-Streett automaton only involves a
quadratic size blowup (Table 4).

Proposition 4. Complementation of a nondeterministic hyper-dual automaton
involves a singly-exponential size blowup, and the union and intersection of two
nondeterministic hyper-dual automata involve a quadratic size blowup.
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Properness check. Constructing a hyper-dual automaton from a classic automa-
ton and boolean operations guarantees its properness. Checking whether an ar-
bitrary pair of hyper-Rabin and hyper-Streett automata is a proper hyper-dual
automaton might not be too interesting and it is also coNP-complete for deter-
ministic automata and EXPSPACE-complete for nondeterministic automata.

Proposition 5. Given a pair C = (A,B) of a deterministic hyper-Rabin au-
tomaton A and a deterministic hyper-Streett automaton B, the problem of de-
ciding whether C is a proper hyper-dual automaton is coNP-complete.

Proof. For the upper bound, we should validate that L(A) = L(B). This is the
case iff L(A) ⊆ L(B) and L(B) ⊆ L(A), which is the case iff L(A) ∩ L(B) = ∅
and L(B) ∩ L(A) = ∅.

Observe that L(B) = L(B), and that B is a hyper-Rabin automaton. Thus,
checking whether L(A) ⊆ L(B) is in PTIME: constructing A ∩ B is possible in
quadratic time (Table 2), and its emptiness check in PTIME (Table 3).

As for checking whether L(B) ⊆ L(A), observe that L(A) = L(A), and
that A is a hyper-Streett automaton. Thus, the check is in co-NP: constructing
B ∩A is possible in quadratic time (Table 2), and its nonemptiness check in NP
(Table 3).

For the lower bound, consider a pair C in which A is an empty automaton.
Then C is proper iff B is empty, and the nonemptiness check of a DHSW is
NP-complete (Table 3).

Proposition 6. Given a pair C = (A,B) of a nondeterministic hyper-Rabin
automaton A and a nondeterministic hyper-Streett automaton B, the problem of
deciding whether C is a proper hyper-dual automaton is EXPSPACE-complete.

Proof. For the upper bound, we can translate A and B to Büchi automata, hav-
ing an exponential size blowup (Proposition 1), and then check the equivalence
of the two Büchi automata in PSPACE.

For the lower bound, consider a pair C in whichA is an automaton recognizing
Σω. Then C is proper iff B is universal, and the universality check of a hyper-
Streett automaton is EXPSPACE-complete (Table 3).

Succinctness. Comparing hyper-dual automata to the classic types, there is no
size blowup in the translation of Rabin and Streett automata to a hyper-dual
automaton (Proposition 2), while there is an exponential size blowup in the
other direction when considering deterministic automata—for the translation to
a Rabin automaton, we have the lower bound of deterministic Streett to Rabin,
by considering two copies of the Streett automaton as a hyper-dual automaton,
and analogously to the translation to Streett (Table 1).

Proposition 7. There is a 2ω(n logn) size blowup in the translation of determin-
istic hyper-dual automaton to deterministic Rabin and Streett automata.

An upper bound for translating a deterministic hyper-dual automaton to
deterministic Rabin and Streett automata involves a 2O(n4 logn) size blowup:
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We can consider a hyper-Rabin automaton of size n with n disjuncts in its
acceptance condition as the union of n deterministic Streett automata of size n,
which can then be viewed as a single nondeterministic Streett automaton of size
n2. A Streett automaton of size m can be translated to deterministic Rabin and
Streett automata of size 2O(m2 logm) (Table 1), providing a total size blowup of

2O(n4 logn).
In the nondeterministic setting there is an exponential blowup in the trans-

lation to a Rabin automaton, due to the lower bound in the translation of a
nondeterministic Streett automaton to a nondeterministic Rabin automaton (Ta-
ble 1), while the translation to a Streett automaton only involves a quadratic
size blowup, as a hyper-Rabin automaton with n disjuncts can be viewed as the
union of n Streett automata.

Usage and decision procedures. Equipped with both a hyper-Rabin automaton
and a hyper-Streett automaton, we can “enjoy both worlds”, by choosing which
of them to use for each task. As a result, using them for synthesis, model-
checking probabilistic automata, or game solving is not more difficult than using
a hyper-Rabin or hyper-Streett automaton, and all decision problems in the
deterministic setting have polynomial-time algorithms. In the nondeterministic
setting, the decision problems are roughly as for hyper-Streett automata due to
the quadratic translation of hyper-Rabin to hyper-Streett.

Proposition 8. Nonemptiness and universality checks of a deterministic hyper-
dual automaton, as well as the containment and equivalence problems of two
deterministic hyper-dual automata, are in PTIME.

Proof. Consider a hyper-dual automaton C = (A,B). Then C is empty iff A is,
and it is universal iff B is empty, which reduces to checking the (non-)emptiness
of hyper-Rabin automata, which is in PTIME (Table 3).

Consider two hyper-dual automata C′ = (A′,B′) and C′′ = (A′′,B′′). Then
L(C′) ⊆ L(C′′) iff L(A′) ∩ L(B′′) = ∅. Observe that L(B′′) = L(B′′), and that
B′′ is a hyper-Rabin automaton. Thus, checking whether L(A′) ⊆ L(B′′) is in
PTIME: constructing A′ ∩ B′′ is possible in quadratic time (Table 2), and its
emptiness check in PTIME (Table 3).

For checking whether L(C′′) ⊆ L(C′), we can analogously consider A′′ ∩ B′.

6 Conclusions

Automata on infinite words enjoy a variety of acceptance conditions, which are
indeed necessary due to the richness of ω-regular languages and their connection
to various kinds of other formalisms and logics. In the deterministic setting,
which has recently become very relevant, it seems that there is still place for
new acceptance conditions. In particular, when the automata are to be involved
in positive boolean operations, one may consider the hyper-Rabin condition, and
when complementations are also in place, one may consider the hyper-dual type.
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